MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2005 Certified)
DEGREE \& DIPLOMA

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills.)
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by the candidate and those in the model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and the model answer.
6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 2	b) Ans. c) Ans.	Convert the following bearings into relevant bearings: i) $138^{0} 15$, ii) $309^{\circ} 30$, iii) $\mathbf{N} 42^{\mathbf{0}}$ E iv) $S 17^{\circ} 25, \mathrm{~W}$ 1) $138^{\circ} 15$, WCB lies in $\mathrm{II}^{\text {nd }}$ quadrant $\mathrm{RB}=180^{\circ}-\mathrm{WCB}$ $R B=180^{\circ}-138^{\circ} 15^{\prime}$ $\mathbf{R B}=\mathbf{S 4 1}{ }^{\circ} \mathbf{4 5}{ }^{\prime} \mathbf{E}$ 2) $309^{0} 30$, WCB lies in $\mathrm{IV}^{\text {th }}$ quadrant $\mathrm{RB}=360^{\circ}-\mathrm{WCB}$ $\mathrm{RB}=360^{\circ}-309^{\circ} 30^{\prime}$ $\mathbf{W C B}=\mathbf{N} 50^{\circ} 30^{\prime} \mathbf{W}$ 3) $\mathbf{N} \mathbf{4 2 ^ { 0 }} \mathbf{E}$ RB lies in $\mathrm{I}^{\text {st }}$ quadrant $\begin{aligned} & \mathrm{WCB}=\mathrm{RB} \\ & \mathbf{W C B}=\mathbf{4 2}^{\mathbf{0}} \end{aligned}$ 4) $S 17^{\circ} 25^{\prime} \mathrm{W}$ RB lies in $\mathrm{III}^{\text {nd }}$ quadrant $\mathrm{WCB}=180^{\circ}+\mathrm{RB}$ $\mathrm{WCB}=180^{\circ}+17^{\circ} / 25^{\prime}$ $\text { WCB }=197^{\circ} 25^{\prime}$ Explain the temporary adjustments of prismatic compass. Temporary Adjustments of Prismatic Compass 1. Fixing the compass to the tripod The compass is fixed on a tripod by rotating screw head of tripod stand. 2. Centering the compass The prismatic compass is centered over a survey station correctly by means of a plumb bob or by dropping a pebble from the center of the instrument and moving tripod legs accordingly. 3. Levelling the compass The compass is quickly levelled by ball and socket arrangement by eye judgment. It should be levelled in such a way that dial moves freely and does not touch the rim of the compass. 4. Focusing the prism The triangular prism is moved using focusing stud so that readings on graduated ring will be seen clearly.	1 1 1 4	4

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 3	d)	vi. A wrong entry may be made in the level book. vii. The staff may not be properly and fully extended. 3. Errors due to Natural Causes i. When the distance of sight is long, the curvature of the earth may affect the staff reading. ii. The effect of refraction may cause a wrong staff reading to be taken. iii. The effect of high winds and a shining sun may result in a wrong staff reading.		

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 4	a) Ans. b) Ans.	Attempt any THREE of the following: Explain Types of bench marks. (a) GTS Bench-Marks - These bench-marks are established by the Survey of India Department at large intervals all over the country. The values of reduced levels, the relevant positions and the number of bench-marks are given in a catalogue published by this department. (b) Permanent Bench-Marks - These are fixed points or marks established by different Government departments like PWD, Railways, Irrigation, etc. The RLs of these points are determined with reference to the GTS bench-mark, and are kept on permanent points like the plinth of a building, parapet of a bridge or culvert and so on. Sometimes they are kept on underground pillars. (c) Arbitrary Bench-Marks - When the RLs of some fixed points are assumed. They are termed arbitrary bench-marks. These are adopted in small survey operations when only the undulation of the ground surface is required to be determined. (d) Temporary Bench-Marks - When the bench-marks are established temporarily at the end of a day's work, they are said to be temporary bench-marks They are generally made on the root of a tree, the parapet of a nearby culvert, a furlong post, or on a similar place. State any eight component parts with its functions of dumpy level. Levelling head (Trivet) - To support foot screws Foot screw - To regulate the tribrach position and hence the instrument can be leveled. iii. Tribrach - To support trivet and foot screw, the horizontal level of the instrument can be achieved by adjusting this tribrach plate. iv. Circular compass - For taking magnetic bearing of line when required. v. Telescope - To bisect the object appropriately or to observe the distant object through line of sight provided by its arrangement. vi. \quad Eyepiece - To view the distant object. It contains magnifying glass which magnify the observing image and also the cross hairs of diaphragm. So, accurate reading can be obtained. vii. Focusing screw -To adjust and focus cross hairs and the image clearly. The magnification of eye piece is managed by this focusing screw. viii. Diaphragm - It contains cross hairs made of dark metal which are arranged in perfect perpendicular positions. These cross hairs are used by the eye piece to bisect the objective through objective lens. ix. Longitudinal bubble / Cross bubble tube - to check the level of instrument x. Shade - to prevent the objective lens from sunlight or any other light rays which may cause disturbance to the line of sight.	1 1 1 1 $1 / 2$ Mark each (any eight)	(12)

Model Answer: Winter- 2018

$\left.$| Que.
 No. | Sub.
 Que. | Model Answer | Marks |
| :---: | :---: | :---: | :---: | :---: | | Total |
| :---: |
| Marks | \right\rvert\,

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2005 Certified)

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 4	d) Ans. e) Ans.	Describe the procedure for measuring the area using digital planimeter. The procedure of measurement of an area using digital planimeter is as follows: i. Take the area on the plane surface of table and fix it with clips so that while measurement it does not move. ii. Start the planimeter by pressing on button on key pad of it. Screen will be displayed. iii. Set the scale by pressing scale button on key pad. iv. Mark one starting point on boundary of that area and place the point of magnifier of tracing arm of digital planimeter. v. Press the start button and move tracing arm on boundary of area and end it again at its starting point. Press the end button. vi. The area of given figure is displayed in digital display of digital planimeter. Explain the procedure of computing the volume of reservoir from any contour map. Reservoirs are made for water supply and for power or irrigation projects. A contour map is very useful to study the possible location of a dam and the volume of water to be confined. All the contours are closed lines within the reservoir area. The areas $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3} \ldots . . \mathrm{A}_{n}$ between successive contour lines can be determined by a planimeter and if h is the contour interval, the capacity of the reservoir can be estimated by the application of either the trapezoidal or the prismoidal formula. (a) Trapezoidal formula Volume, $V=h\left[\frac{A_{1}+A_{n}}{2}+A_{2}+A_{3}+\ldots+A_{n-1}\right]$ (b) Prismoidal formula Volume, $\begin{aligned} V=\frac{h}{3}\left[A_{1}+A_{n}+\right. & 4\left(A_{2}+A_{4}+\ldots+A_{n-1}\right) \\ & \left.+2\left(A_{3}+A_{5}+\ldots+A_{n-2}\right)\right] \end{aligned}$	4	4

Model Answer: Winter- 2018

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 6	b)	6. Fall at station 7 Fall at station $7=\mathrm{BS}$ of station 6 - IS of station 7 $\begin{aligned} & =1.620-3.625 \\ & =-2.005 \end{aligned}$ 7. FS of station 8 : Rise at station $8=$ IS of station $7-$ FS of station 8 $\begin{gathered} 2.145=3.625-X \\ X=3.625-2.145=1.48 \end{gathered}$ 8. RL of station 1 RL of station $1+$ Rise at station $2=R L$ of station 2 $\begin{gathered} X+1.325=125.005 \\ X=125.005-1.325=123.68 \end{gathered}$ 9. RL of station 3 RL of station $3=R L$ of station $2-$ Fall at station 3 $\begin{aligned} & X=125.005-0.055 \\ & X=124.95 \end{aligned}$ 10. RL of station 6 RL of station $6=$ RL of station $5-$ Fall at station 6 $\begin{aligned} & X=124.615-2.165 \\ & X=122.45 \end{aligned}$ 11. RL of station 9 RL of station $7=R L$ of station $6-$ Fall at station 7 $\begin{aligned} & X=122.45-2.005 \\ & X=120.445 \end{aligned}$ Arithmetic check- Σ BS $-\Sigma$ FS $=\Sigma$ Rise $-\Sigma$ Fall $=$ RL of Last Point - RL of First Point $\begin{aligned} 8.05-9.14 & =3.87-4.96=122.590-123.680 \\ \mathbf{- 1 . 0 9} & =\mathbf{- 1 . 0 9}=\mathbf{- 1 . 0 9} \end{aligned}$	1	6

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(ISO/IEC - 27001-2005 Certified)
Model Answer: Winter- 2018

	Sub. Que.	Model Answers	Marks	Total Marks

